International Journal of Home Economics, Hospitality and Allied Research
P-ISSN: 2971-5121
E-ISSN: 3027-1819

Review Report

Production of Cooking Gas through Electrochemical Decomposition of Organic Matter

Rodolphe N’Dedji Sodokin1 , Chika Oliver Ujah1,2, Daramy Vandi Von Kallon2, Gildas David Farid Adamon3
1Africa Centre of Excellence for Sustainable Power and Energy Development (ACE-SPED), University of Nigeria, Nsukka 410001, Nigeria
2Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa
3Department of Energy, National Higher Institute of Industrial Technology of the National University of Sciences, Technologies, Engineering and Mathematics (INSTI/UNSTIM), BP 133 Lokossa, Republic of Benin
*Correspondence: Chika Oliver Ujah, Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa (Email: chikau@uj.ac.za).

 

Abstract: In recent decades, the use of electrochemistry has increased exponentially. Electrochemistry has demonstrated their effectiveness in the cleaning of manufactured effluents and the decomposition of complex hydrological compounds for water treatment. Looking at the efficiency of the technology in the decomposition of organic matter, one wonders if it is not capable of doing more than just the de-pollution and treatment of water. Of course, there are other uses of electrochemistry, but in the literature, it is understood that it is used more for water treatment and de-pollution. This work is a review of the literature to identify the major works in electrochemical decomposition of organic matter to see to what extent this technology can be used for methane production (cooking gas) using pasty organic matter. The list of works appearing in this review is not exhaustive, but it is sufficient to give a clear idea of the technology, its progress and, above all, the challenges it faces. This review opens the way to other applications of electrochemical decomposition to meet today's energy challenges.
Keywords: Cooking Gas, Electrochemical Decomposition, Electrochemistry, Hydrological Compounds, Organic Matter

Read Full Article

References

Abaci, S., Tamer, U., Pekmez, K., & Yildiz, A. (2005). Performance of different crystal structures of          PbO 2 on electrochemical degradation of phenol in aqueous solution. Applied Surface Science,   240(1–4), 112–119. https://doi.org/10.1016/j.apsusc.2004.06.021

Austin, D. S., Polta, J. A., Polta, T. Z., Tang, A. P. C., Cabelka, T. D., & Johnson, D. C. (1984). Electrocatalysis at platinum electrodes for anodic electoanalysis. Journal of Electroanalytical Chemistry, 168(1–2), 227–248. https://doi.org/10.1016/0368-1874(84)87101-4

Beil, S. B., Müller, T., Sillart, S. B., Franzmann, P., Bomm, A., Holtkamp, M., Karst, U., Schade, W., & Waldvogel, S. R. (2018). Active Molybdenum-Based Anode for Dehydrogenative Coupling Reactions. Angewandte Chemie - International Edition, 57(9), 2450–2454. https://doi.org/10.1002/anie.201712718

Belhadj-Tahar, N. (1996). Mise au point de matériaux d’anodes pour la dépollution d’effluents organiques: dégradation du phénol en solution aqueuse sur une anode en dioxyde de plomb. Thèse Université Paul Sabatier Toulouse,.

Belhout, D., Ghernaout, D., Djezzar-Douakh, S., & Kellil, A. (2010). Electrocoagulation of a raw water of Ghrib Dam (Algeria) in batch using aluminium and iron electrodes. Desalination and Water Treatment, 16(1–3), 1–9. https://doi.org/10.5004/dwt.2010.1081

Bonfatti, F., Ferro, S., Lavezzo, F., Malacarne, M., Lodi, G., & De Battisti, A. (2000). Electrochemical Incineration of Glucose as a Model Organic Substrate. II. Role of Active Chlorine Mediation. Journal of The Electrochemical Society, 147(2), 592. https://doi.org/10.1149/1.1393238

Bouamrane, F., Tadjeddine, A., Butler, J. E., Tenne, R., & Lévy-Clément, C. (1996). Electrochemical study of diamond thin films in neutral and basic solutions of nitrate. Journal of Electroanalytical Chemistry, 405(1–2), 95–99. https://doi.org/10.1016/0022-0728(95)04388-8

Brillas, E. (2021). Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. Journal of Cleaner Production, 290. https://doi.org/10.1016/j.jclepro.2021.125841

Bureau, Marc-André (2004). Stabilisation et traitement électrochimique des boues d’épuration municipales et industrielles. Institut National de la Recherche Scientifique (Canada) ProQuest Dissertations Publishing, 30456511

Cañizares, P., García-Gómez, J., Lobato, J., & Rodrigo, M. A. (2003). Electrochemical oxidation of aqueous carboxylic acid wastes using diamond thin-film electrodes. Industrial and Engineering Chemistry Research, 42(5), 956–962. https://doi.org/10.1021/ie020594+

Cañizares, P., Sáez, C., Lobato, J., & Rodrigo, M. A. (2004). Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochimica Acta, 49(26), 4641–4650. https://doi.org/10.1016/j.electacta.2004.05.019

Carey, J.J., Christ, Jr., C.S., Lowery, S.N. (1995). U.S. Patent No. 5 399 247 (21 March 1995).

Chailapakul, O., Popa, E., Tai, H., Sarada, B. V., Tryk, D. A., & Fujishima, A. (2000). The electrooxidation of organic acids at boron-doped diamond electrodes. Electrochemistry Communications, 2(6), 422–426. https://doi.org/10.1016/S1388-2481(00)00049-7

Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environmental Sciences: Processes and Impacts, 16(6), 1182–1203. https://doi.org/10.1039/c3em00679d

Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11–41. https://doi.org/10.1016/j.seppur.2003.10.006

Cobb, S. J., Ayres, Z. J., & Macpherson, J. V. (2018). Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. Annual Review of Analytical Chemistry, 11, 463–484. https://doi.org/10.1146/annurev-anchem-061417-010107

Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11–12), 1857–1862. https://doi.org/10.1016/0013-4686(94)85175-1

Cañizares, P., Larrondo, F., Lobato, J., Rodrigo, M. A., & Sáez, C. (2005). Electrochemical synthesis of peroxodiphosphate using boron-doped diamond anodes. Journal of the Electrochemical Society, 152(11), D191. https://doi.org/110.1149/1.2039936

Dean, J.A. (1992). Lange’s Handbook of Chemistry (4th ed.). McGRAW-HILL, INC. New York St. Louis San Francisco Auckland Bogotá

Duo, I., Levy-Clement, C., Fujishima, A., & Comninellis, C. (2004). Electron transfer kinetics on boron-doped diamond Part I: Influence of anodic treatment. Journal of Applied Electrochemistry, 34(9), 935–943. https://doi.org/10.1023/B:JACH.0000040525.76264.16

Electrolysis. (n.d). Wikipedia, https://en.wikipedia.org/wiki/Electrolysis

Ferro, S., De Battisti, A., Duo, I., Comninellis, C., Haenni, W., & Perret, A. (2000). Chlorine evolution at highly boron‐doped diamond electrodes. Journal of the Electrochemical Society, 147(7), 2614. https://doi.org/10.1149/1.1393578

Fleszar, B., & Poszyńska, J. (1985). An attempt to define benzene and phenol electrochemical oxidation mechanism. Electrochimica Acta, 30(1), 31–42. https://doi.org/10.1016/0013-4686(85)80055-4

Gandini, D., Michaud, P. A., Duo, I., Mahé, E., Haenni, W., Perret, A., & Comninellis, C. (1999). Electrochemical Behavior of Synthetic Boron-Doped Diamond Thin Film Anodes. New Diamond and Frontier Carbon Technology, 9(5), 303–316.

Garcia-Segura, S., Ocon, J. D., & Chong, M. N. (2018). Electrochemical oxidation remediation of real wastewater effluents — A review. Process Safety and Environmental Protection, 113, 48–67. https://doi.org/10.1016/j.psep.2017.09.014

Ghernaout, D., & Elboughdiri, N. (2020). Electrochemical Technology for Wastewater Treatment: Dares and Trends. OALib, 07(01), 1–17. https://doi.org/10.4236/oalib.1106020

Ghernaout, D., Ghernaout, B., Boucherit, A., Naceur, M. W., Khelifa, A., & Kellil, A. (2009). Study on mechanism of electrocoagulation with iron electrodes in idealised conditions and electrocoagulation of humic acids solution in batch using aluminium electrodes. Desalination and Water Treatment, 8(1–3), 91–99. https://doi.org/10.5004/dwt.2009.668

Ghernaout, D., Ghernaout, B., & Kellil, A. (2009). Natural organic matter removal and enhanced coagulation as a link between coagulation and electrocoagulation. Desalination and Water Treatment, 2(1–3), 203–222. https://doi.org/10.5004/dwt.2009.116

Ghernaout, D., Ghernaout, B., Saiba, A., Boucherit, A., & Kellil, A. (2009). Removal of humic acids by continuous electromagnetic treatment followed by electrocoagulation in batch using aluminium electrodes. Desalination, 239(1–3), 295–308. https://doi.org/10.1016/j.desal.2008.04.001

Ghernaout, D., Mariche, A., Ghernaout, B., & Kellil, A. (2010). Electromagnetic treatment-doubled electrocoagulation of humic acid in continuous mode using response surface method for its optimisation and application on two surface waters. Desalination and Water Treatment, 22(1–3), 311–329. https://doi.org/10.5004/dwt.2010.1120

Gütz, C., Selt, M., Bänziger, M., Bucher, C., Römelt, C., Hecken, N., Gallou, F., Galvão, T. R., & Waldvogel, S. R. (2015). A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives. Chemistry - A European Journal, 21(40), 13878–13882. https://doi.org/10.1002/chem.201502064

Harris, P. J. F. (2004). Fullerene-related structure of commercial glassy carbons. Philosophical Magazine, 84(29), 3159–3167. https://doi.org/10.1080/14786430410001720363

Harrison, J. A., & Mayne, J. M. (1983). The oxidation of aromatic organic compounds at a lead dioxide electrode. Electrochimica Acta, 28(9), 1223–1228. https://doi.org/10.1016/0013-4686(83)85009-9

Heard, D. M., & Lennox, A. J. J. (2020). Electrode Materials in Modern Organic Electrochemistry. Angewandte Chemie, 132(43), 19026–19044. https://doi.org/10.1002/ange.202005745

Iniesta, J., Exposito, E., González-Garcıa, J., Montiel, V., & Aldaz, A. (2002). Electrochemical treatment of industrial wastewater containing phenols. Journal of the Electrochemical Society, 149(5), D57. https://doi.org/10.1149/1.1464136

Iniesta, J., Michaud, P. A., Panizza, M., Cerisola, G., Aldaz, A., & Comninellis, C. H. (2001). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 46(23), 3573–3578. https://doi.org/10.1016/S0013-4686(01)00630-2

Inui, T., & Takeguchi, T. (1991). Effective conversion of carbon dioxide and hydrogen to hydrocarbons. Catalysis Today, 10(1), 95–106. https://doi.org/10.1016/0920-5861(91)80077-M

Jing, X., Wang, X., Li, X., Wang, D., Xu, H., & Yan, W. (2023). Progress in the Preparation of Metal Oxide Electrodes for the Electrochemical Treatment of Organic Wastewater: A Short Review. Catalysts, 13(7). https://doi.org/10.3390/catal13071096

JOSEPH DE LAAT. (1981). Contribution à l’étude du mécanisme de formation des trihalométhanes : indice de I’azote ammoniacal et des traitements de préoxydation. Université de Poitiers, Poitiers,

Katsuki, N., Takahashi, E., Toyoda, M., Kurosu, T., Iida, M., Wakita, S., Nishiki, Y., & Shimamune, T. (1998). Water Electrolysis Using Diamond Thin‐Film Electrodes. Journal of The Electrochemical Society, 145(7), 2358–2362. https://doi.org/10.1149/1.1838643

Kislyi, A., Moroz, I., Guliaeva, V., Prokhorov, Y., Klevtsova, A., & Mareev, S. (2023). Electrochemical Oxidation of Organic Pollutants in Aqueous Solution Using a Ti4O7 Particle Anode. Membranes, 13(5). https://doi.org/10.3390/membranes13050521

Komatsu, M., Rao, T. N., & Fujishima, A. (2003). Detection of hydroxyl radicals formed on an anodically polarized diamond electrode surface in aqueous media. Chemistry Letters, 32(4), 396–397. https://doi.org/10.1246/cl.2003.396

Kötz, R., Stucki, S., & Carcer, B. (1991a). Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. Journal of Applied Electrochemistry, 21(1), 14–20. https://doi.org/10.1007/BF01103823

Kötz, R., Stucki, S., & Carcer, B. (1991b). Electrochemical waste water treatment using high overvoltage anodes. Journal of Applied Electrochemistry, 21(2), 99–104.

Lacasa, E., Cotillas, S., Saez, C., Lobato, J., Cañizares, P., & Rodrigo, M. A. (2019). Environmental applications of electrochemical technology. What is needed to enable full-scale applications? Current Opinion in Electrochemistry, 16, 149–156. https://doi.org/10.1016/j.coelec.2019.07.002

Lattes, A. (2000). De l’hydrogénation catalytique à la théorie chimique de la catalyse : Paul Sabatier, chimiste de génie, apôtre de la décentralisation. Comptes Rendus de l’Academie Des Sciences - Series IIc: Chemistry, 3(9), 705–709. https://doi.org/10.1016/S1387-1609(00)01184-1

Lim, Y., Chu, J. H., Lee, D. H., Kwon, S. Y., & Shin, H. (2017). Increase in graphitization and electrical conductivity of glassy carbon nanowires by rapid thermal annealing. Journal of Alloys and Compounds, 702, 465–471. https://doi.org/10.1016/j.jallcom.2017.01.098

Lips, S., & Waldvogel, S. R. (2019). Use of boron-doped diamond electrodes in electro-organic synthesis. ChemElectroChem, 6(6), 1649–1660. https://doi.org/10.1002/celc.201801620

Man, S., Ge, X., Xu, K., Yang, H., Bao, H., Sun, Q., He, M., Xie, Y., Li, A., Mo, Z., Yang, W., & Li, X. (2022). Fabrication of a Ti/PbO2 electrode with Sb doped SnO2 nanoflowers as the middle layer for the degradation of methylene blue, norfloxacin and p-dihydroxybenzene. Separation and Purification Technology, 280. https://doi.org/10.1016/j.seppur.2021.119816

Marselli, B., Garcia-Gomez, J., Michaud, P.-A., Rodrigo, M. A., & Comninellis, C. (2003). Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes. Journal of The Electrochemical Society, 150(3), D79. https://doi.org/10.1149/1.1553790

Martínez-Huitle, C. A., Ferro, S., & De Battisti, A. (2004). Electrochemical incineration of oxalic acid: Role of electrode material. Electrochimica Acta, 49(22-23 SPEC. ISS.), 4027–4034. https://doi.org/10.1016/j.electacta.2004.01.083

Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chemical Reviews, 115(24), 13362–13407. https://doi.org/10.1021/acs.chemrev.5b00361

Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2023). A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Applied Catalysis B: Environmental, 328. https://doi.org/10.1016/j.apcatb.2023.122430

Martínez-Huitle, C. A., Scialdone, O., & Rodrigo, M. A. (2018). Electrochemical water and wastewater treatment. Electrochemical Water and Wastewater Treatment, 1–553. https://doi.org/10.1016/C2016-0-04297-3

Michaud, P. A. (2002). Comportement anodique du diamant synthétique dopé au bore. In Chimie et Génie chimique. Lausanne, EPFL. https://doi.org/10.5075/epfl-thesis-2595

Michaud, P. A., Panizza, M., Ouattara, L., Diaco, T., Foti, G., & Comninellis, C. (2003). Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. Journal of Applied Electrochemistry, 33(2), 151–154. https://doi.org/10.1023/A:1024084924058

Mitadera, M., Spataru, N., & Fujishima, A. (2004). Electrochemical oxidation of aniline at boron-doped diamond electrodes. Journal of Applied Electrochemistry, 34(3), 249–254. https://doi.org/10.1023/B:JACH.0000015623.63462.60

Moletta, R. (2008.). La méthanisation de la biomasse. Techniques De L'ingénieur. https://www.techniques-ingenieur.fr/base-documentaire/archives-th12/archives-bioprocedes-et-bioproductions-tiabi/archive-1/methanisation-de-la-biomasse-bio5100/

Nosaka, Y., & Nosaka, A. (2016). Understanding hydroxyl radical (• OH) generation processes in photocatalysis. ACS Energy Letters, 1(2), 356-359. https://doi.org/doi: 10.1021/acsenergylett

Nosaka, Y., & Nosaka, A. (2016). Understanding Hydroxyl Radical (•OH) Generation Processes in Photocatalysis. ACS Energy Letters, 1(2), 356–359. https://doi.org/10.1021/acsenergylett.6b00174

Oturan, E., Oturan, N., & Oturan, M. A. (2018). An unprecedented route of [rad]OH radical reactivity evidenced by an electrocatalytical process: Ipso-substitution with perhalogenocarbon compounds. Applied Catalysis B: Environmental, 226, 135–146. https://doi.org/10.1016/j.apcatb.2017.12.028

Panizza, M., & Cerisola, G. (2005). Application of diamond electrodes to electrochemical processes. Electrochimica Acta, 51(2), 191–199. https://doi.org/10.1016/j.electacta.2005.04.023

Panizza, M., Michaud, P. A., Cerisola, G., & Comninellis, C. (2001). Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 507(1-2), 206-214. https://doi.org/10.1016/S0022-0728(01)00398-9

Patel, A. N., Tan, S. Y., Miller, T. S., MacPherson, J. V., & Unwin, P. R. (2013). Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine. Analytical Chemistry, 85(24), 11755–11764. https://doi.org/10.1021/ac401969q

Payne, D. J., Egdell, R. G., Law, D. S. L., Glans, P. A., Learmonth, T., Smith, K. E., Guo, J., Walsh, A., & Watson, G. W. (2007). Experimental and theoretical study of the electronic structures of α-PbO and β-PbO2. Journal of Materials Chemistry, 17(3), 267–277. https://doi.org/10.1039/b612323f

Pelskov, Y. V., Sakharova, A. Y., Krotova, M. D., Bouilov, L. L., & Spitsyn, B. V. (1987). Photoelectrochemical properties of semiconductor diamond. Journal of Electroanalytical Chemistry, 228(1–2), 19–27. https://doi.org/10.1016/0022-0728(87)80093-1

Perret, A., Haenni, W., Skinner, N., Tang, X. M., Gandini, D., Comninellis, C., Correa, B., & Foti, G. (1999). Electrochemical behavior of synthetic diamond thin film electrodes. Diamond and Related Materials, 8(2–5), 820–823. https://doi.org/10.1016/s0925-9635(98)00280-5

Pletcher, D. (2018). Organic electrosynthesis – A road to greater application. A mini review. Electrochemistry Communications, 88, 1–4. https://doi.org/10.1016/j.elecom.2018.01.006

Polcaro, A. M., Mascia, M., Palmas, S., & Vacca, A. (2004). Electrochemical degradation of diuron and dichloroaniline at BDD electrode. Electrochimica Acta, 49(4), 649–656. https://doi.org/10.1016/j.electacta.2003.09.021

Priyadarshini, M., Ahmad, A., Das, S., & Ghangrekar, M. M. (2022). Application of innovative electrochemical and microbial electrochemical technologies for the efficacious removal of emerging contaminants from wastewater: A review. Journal of Environmental Chemical Engineering, 10(5). https://doi.org/10.1016/j.jece.2022.108230

Radjenovic, J., & Sedlak, D. L. (2015). Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. Environmental Science and Technology, 49(19), 11292–11302. https://doi.org/10.1021/acs.est.5b02414

Rihko-Struckmann, L. K., Peschel, A., Hanke-Rauschenbach, R., & Sundmacher, K. (2010). Assessment of methanol synthesis utilizing exhaust CO2 for chemical storage of electrical energy. Industrial and Engineering Chemistry Research, 49(21), 11073–11078. https://doi.org/10.1021/ie100508w

Rusling, J. F. (1994). Electrochemistry in micelles, microemulsions, and related microheterogeneous fluids. In Bard, A.L. (ed), Electroanal Chemistry (vol. 18), pp. 1–88. CRC Press.

Saha, M. S., Furuta, T., & Nishiki, Y. (2004). Conversion of carbon dioxide to peroxycarbonate at boron-doped diamond electrode. Electrochemistry Communications, 6(2), 201–204. https://doi.org/10.1016/j.elecom.2003.11.014

Saiba, A., Kourdali, S., Ghernaout, B., & Ghernaout, D. (2010). In desalination, from 1987 to 2009, the birth of a new seawater pretreatment process: Electrocoagulation-an overview. Desalination and Water Treatment, 16(1–3), 201–217. https://doi.org/10.5004/dwt.2010.1094

Savall, A. (1995). Electrochemical Treatment of Industrial Organic Effluents. Chimia, 49(1–2), 23. https://doi.org/10.2533/chimia.1995.23

Serrano, K., Michaud, P. A., Comninellis, C., & Savall, A. (2002). Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochimica Acta, 48(4), 431–436. https://doi.org/10.1016/S0013-4686(02)00688-6

Shao, D., Li, W., Wang, Z., Yang, C., Xu, H., Yan, W., ... & Song, H. (2022). Variable activity and selectivity for electrochemical oxidation wastewater treatment using a magnetically assembled electrode based on Ti/PbO2 and carbon nanotubes. Separation and Purification Technology, 301, 122008. https://doi.org/10.1016/j.seppur.2022.122008

Shestakova, M., & Sillanpää, M. (2017). Electrode materials used for electrochemical oxidation of organic compounds in wastewater. Reviews in Environmental Science and Biotechnology, 16(2), 223–238. https://doi.org/10.1007/s11157-017-9426-1

Simond, O., Schaller, V., & Comninellis, C. (1997). Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochimica Acta, 42(13–14), 2009–2012. https://doi.org/10.1016/S0013-4686(97)85475-8

Sirés, I., Brillas, E., Oturan, M. A., Rodrigo, M. A., & Panizza, M. (2014). Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environmental Science and Pollution Research, 21(14), 8336–8367. https://doi.org/10.1007/s11356-014-2783-1

Sopchak, D., Miller, B., Avyigal, Y., & Kalish, R. (2002). Rotating ring-disk electrode studies of the oxidation of p-methoxyphenol and hydroquinone at boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 538539, 39–45. https://doi.org/10.1016/S0022-0728(02)01045-8

Sun, G., Wang, C., Gu, W., & Song, Q. (2021). A facile electroless preparation of Cu, Sn and Sb oxides coated Ti electrode for electrocatalytic degradation of organic pollutants. Science of the Total Environment, 772. https://doi.org/10.1016/j.scitotenv.2020.144908

Trasatti, S. (1980). Electrocatalysis by oxides — attempt at a unifying approach. Journal of Electroanalytical Chemistry, 111(1), 125–131. https://doi.org/10.1016/0368-1874(80)80246-2

Trellu, C., Chaplin, B. P., Coetsier, C., Esmilaire, R., Cerneaux, S., Causserand, C., & Cretin, M. (2018). Electro-oxidation of organic pollutants by reactive electrochemical membranes. Chemosphere, 208, 159–175. https://doi.org/10.1016/j.chemosphere.2018.05.026

Ujah, C. O., Kallon, D. V. Von, & Aigbodion, V. S. (2022). Overview of Electricity Transmission Conductors: Challenges and Remedies. Materials, 15(22). https://doi.org/10.3390/ma15228094

Ujah, C. O., Kallon, D. V. Von, Aikhuele, D. O., & Aigbodion, V. S. (2022). Advanced Composite Materials: A Panacea for Improved Electricity Transmission. Applied Sciences (Switzerland), 12(16). https://doi.org/10.3390/app12168291

Ujah, C. O., Popoola, A. P. I., Popoola, O. M., & Aigbodion, V. S. (2020). Influence of CNTs addition on the mechanical, microstructural, and corrosion properties of Al alloy using spark plasma sintering technique. International Journal of Advanced Manufacturing Technology, 106(7–8), 2961–2969. https://doi.org/10.1007/s00170-019-04699-7

Wabner, D., & Grambow, C. (1985). Reactive intermediates during oxindation of water lead dioxide and platinum electrodes. Journal of Electroanalytical Chemistry, 195(1), 95–108. https://doi.org/10.1016/0022-0728(85)80008-5

Wang, J. (1981). Reticulated vitreous carbon-a new versatile electrode material. Electrochimica Acta, 26(12), 1721–1726. https://doi.org/10.1016/0013-4686(81)85156-0

Weiss-Hortala, E. (2006). Etude cinétique de la dégradation électrochimique de composés organiques sur l'anode de diamant dope au bore: Application à la dépollution d'effluents aqueux. (Doctoral dissertation, Université Paul Sabatier-Toulouse III).

Wiȩckowski, A. (1981). The classification of adsorption processes of organic compounds on platinum electrode. The role of water molecules chemisorbed on platinum. Electrochimica Acta, 26(8), 1121–1124. https://doi.org/10.1016/0013-4686(81)85087-6

Yeo, I., Kim, S., Jacobson, R., & Johnson, D. C. (1989). Electrocatalysis of Anodic Oxygen Transfer Reactions: Comparison of Structural Data with Electrocatalytic Phenomena for Bismuth‐Doped Lead Dioxide. Journal of The Electrochemical Society, 136(5), 1395–1401. https://doi.org/10.1149/1.2096929

Zaki, A. A., Abdel-Basset, T. A., Haggar, M., & Bashal, A. H. (2021). Dielectric and optical properties of chitosan-Pb and chitosan-Bi nanocomposites. Journal of Materials Science: Materials in Electronics, 32(3), 3603–3611. https://doi.org/10.1007/s10854-020-05107-7

Zhang, F., Shao, D., Yang, C., Xu, H., Yang, J., Feng, L., Wang, S., Li, Y., Jia, X., & Song, H. (2023). New Magnetically Assembled Electrode Consisting of Magnetic Activated Carbon Particles and Ti/Sb-SnO2 for a More Flexible and Cost-Effective Electrochemical Oxidation Wastewater Treatment. Catalysts, 13(1). https://doi.org/10.3390/catal13010007

Zhi, J. F., Wang, H. Bin, Nakashima, T., Rao, T. N., & Fujishima, A. (2003). Electrochemical incineration of organic pollutants on boron-doped diamond electrode. Evidence for direct electrochemical oxidation pathway. Journal of Physical Chemistry B, 107(48), 13389–13395. https://doi.org/10.1021/jp030279g

Publication date:

2023-12-09

DOI

https://doi.org/10.57012/ijhhr.v2n2.007

License 

Vol

2

Issue

2

Page Number

95-120

How to cite:

Sodokin, R.N., Ujah, C.O., Kallon, D.V.V.V., & Adamon, G.D.F., (2023). Production of Cooking Gas through Electrochemical Decomposition of Organic Matter. International Journal of Home Economics, Hospitality and Allied Research, 2(2), 95-120. https://doi.org/10.57012/ijhhr.v2n2.007